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The critical temperature and exponents of a three-dimensional, spin-3,
quantum Heisenberg ferromagnet are obtained using a new method. A sim-
ple cubic lattice of L* sites with periodic boundary conditions is considered.
The Heisenberg Hamiltonian is

H=JYS;"Si.s
1.8
where 8 is a vector connecting nearest-neighbor sites. The spin operators at
site j are S;= (fiug/2)(c”, 07, ¢7);, where the o™ are the Pauli matrices
and ug 1s the Bohr magneton.

Fourier transforming to a wave-number space allows a para-
metrization of the system in terms of spin-wave states, each spin-wave
being an excitation at a wave-number k. Working in occupation number
space the states of the system are defined by a set n(k) = [n(k,), n(k,),...]
of occupation numbers giving the number of spin-waves at each k; n takes
integer values over the discrete wave-number field.

Given a state |n), the expectation value of the absolute magnetization
is given by

M= [<n! (; Si) : (Z S,-> !n>]1/2= [Shu— QN +1-0)1"

where N=L° S2. =(N/2)[(N/2)+1], and Q=3 .o n(k). The thermal
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expectation value of the susceptibility is computed from the fluctuation
dissipation theorem as
N
X =
P kyT

[<M?*),—<MDE] (1)

Where {x ), is the thermal expectation value of x at f=1/(kpT).
The simulation proceeds by generating states in the occupation num-
ber space (Fock space) which are assigned free spin-wave energies

E(n)=n(k,) E(k,)+ n(k,) E(k;) + - (2)

where E(k)=J[3—cos(k*2n/L)— cos(k*2n/L)— cos(k*2rn/L)]. The initial
state is taken to be the ground state where n(k)=0 for all k and the
updating is performed by sweeping through k space. At each point k, a
new occupation number n’'(k,) is constructed as the old occupation number
plus or minus a randomly chosen, nonzero interger 4. The probability of 4
taking a particular value is uniformly distributed over the range of integers
from —4_,, to +A4,.,, excluding zero, and equals zero outside this range
and at 4 =0. The step width 4, is chosen to optimize the convergence of
the simulation
n'(ko)=nlky)+ 4

Two important restrictions are imposed on the space of occupation
numbers. First, no occupation number can be negative, as this would lead
to unphysical states with energies less than the ground state. Second, the
total number of excitations n,,, must be less than or equal to half the num-
ber of sites in the system

nk)=0 for all k
(3)
N =y, n(k) < L%/2
k
This second condition derives from the fact that no more than L* spin-
waves can be excited in a system of L* sites. In addition, in a zero external
field, the set of spin-waves excited from a ground state with all spins
pointing down and spin-waves excited from a ground state with all states
pointing up are degenerate in energy and absolute value of magnetization.
From (1) these two sets also give the same contribution of the suscep-
tibility. As a result, it is only necessary to consider the space consisting of
half the maximum number of excitations. Hence the upper limit L*/2.
Whenever a state is generated in the underlying Markov chain that violates
the conditions in (3) it is treated as having an infinite energy.

The results of the Monte Carlo simulation for sustems of 33, 53, 73, 93,

and 15° sites were analyzed according to finite-size scaling theory. This
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Table I. Critical Temperature and Exponents According to Mean-Field
Theory,
High-Temperature Expansions, and the Present Spin-Wave Theory

Mean field High-temperature series Spin-wave
T 3 1.68 +.01 1.534+.02
p .50 385 4:.025 634.02
y 1.00 143 +.01 41+2

theory says that for sufficiently large systems near the critical region the
following relations hold

M(N, t) oc N(tN®)?

x(N, t) oc N°(¢(N?)""  where t=T-—T )
T is the temperature at which the susceptibility of the infinite system is
singular, as extrapolated from the peaks in the susceptibilities of the finite-
size results; a, b, ¢, and d are chosen so as to best satisfy the scaling
relations. In the ¢ region where scaling relations hold, log[ N *M(N, t)]
and log[ N~ “x(N, t)] are linear functions of log(¢N?) and log(¢:N?). The
critical exponents § and —v are read off as the slopes of log[ N *M(N, t)]
and log[ N~ “¢(N, t)] plotted against log(tN®) and log(tN?). y is obtained
from y below T. In Table I these results, with those obtained from mean-
field theory and high-temperature expansions, are shown.

These results are surprisingly good considering the simplicity of the
model.

Several features of this approach are of note. First, critical behavior is
exhibited by a noninteracting particle model. Second, we do not observe
any critical slowing down in the convergence of the Monte Carlo
simulations. This can be ascribed to working in k space where every con-
figuration includes the effects of the position-space boundaries. Third, we
have predicted the behavior of a three-dimensional quantum system by per-
forming Monte Carlo simulations in a three-dimensional classical con-
figuration space. This is to be contrasted with previous quantum Monte
Carlo work which transcribes d-dimensional quantum system into d+ 1
dimensional classical systems and, therefore, requires computation times
that are greater by a factor of the system size.



